
J. Fluid Mech. (1976), vcE. 77, part 1, pp. 1-25 

Printed in Great Britain 

A theory for wave-power absorption by 
oscillating bodies 

By D. V. EVANS 
Department of Mathematics, University of Bristol, England 

(Received 19 December 1975) 

A theory is given for predicting the absorption of the power in an incident 
sinusoidal wave train by means of a damped, oscillating, partly or completely 
submerged body. General expressions for the efficiency of wave absorption when 
the body oscillates in one or, in some cases, two modes are given. It is shown that 
100% efficiency is possible in some cases. Curves describing the variation of 
efficiency and amplitude of the body with wavenumber for various bodies are 
presented. 

1. Introduction 
In a paper in Nature in 1974, Salter described experiments in which he had 

extracted more than 80 % of the wave power from a two-dimensional sinusoidal 
wave train using a specially contoured two-dimensional rocking cylinder. The 
essential features of the Salter cylinder were that it had a circular rear section 
which did not transmit waves downstream during the motion whilst the front 
section was contoured so as to reflect as little energy as possible. The efficiency of 
the device is defined as the proportion of the available power per unit crest length 
of the incident wave which the cylinder absorbs. This clearly depends on the 
coupling between the cylinder and the fluid, and will vary with wave frequency. 

A complete theory is given here for such devices, based on the usual assumptions 
of linear water-wave theory and assuming that the body is suspended relative 
to some stable reference platform by a system of linear springs and dampers 
which provide restoring forces in addition to any natural buoyancy forces. 

In  Q 3 it  is shown how, for a cylinder constrained to oscillate in a single mode, 
a general expression for the maximum efficiency possible may be obtained 
without examining the equations of motion of the cylinder. In  particular, for 
cylinders which are symmetrical about the axis of oscillation the maximum 
efficiency turns out to be 50%. Equation (4.8) of $ 4  shows that knowledge of 
the solution to the radiation problem, in which the body makes forced oscillations 
in a given mode, is sufficient to determine a general expression for the efficiency 
as a function of wavenumber. In $ 5  5 and 6 the particular cases of a rolling plate 
and a heaving or swaying half-immersed circular cylinder are considered using 
known values for the appropriate added-mass and damping coefficients which 
are required for computing the efficiency. Section 7 describes the corresponding 
theory for three-dimensional bodies having a vertical axis of symmetry. The 
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remarkable result that the maximum power that can be absorbed by a heaving 
body of this type is just L/2n times the power per unit crest length in an incident 
wave of wavelength L is proved. A comparison between the relative efficiencies 
of a heaving sphere and a heaving half-immersed circular cylinder is made. In  
$ 8  the theory is reworked for two modes of oscillation and it is shown how 100 yo 
efficiency is possible in some cases. This is illustrated by curves for the half- 
immersed and totally immersed circular cylinder oscillating in a combination of 
heave and sway motions. In  the latter case, wide bandwidths occurred a t  certain 
values of the wavenumber to which the cylinder was tuned. 

2. Formulation 
The motion is two-dimensional and Cartesian co-ordinates (x, y) are chosen 

such that y = 0 is the undisturbed free surface with y measured vertically 
upwards and x to the right. The usual assumptions of the linearized theory of 
water waves permit the introduction of a velocity potential @(x, y, t )  satisfying 
Laplace’s equation in the fluid and the linearized free-surface condition 

It is assumed that a small amplitude sinusoidal wave train of frequency w is 
incident from x = + co upon the body, which is a long cylinder having horizontal 
generators parallel to the wave crests of the incident wave. The cylinder is 
situated on or beneath the free surface and is constrained to make small amplitude 
oscillations in response to the incident wave. The oscillations may be of heave, 
sway or roll, but not a combination of these. The case of a cylinder oscillating in 
both heave and sway is considered in 9 8. In  the absence of waves it is assumed 
that the cylinder is held in equilibrium by a combination of buoyancy forces and 
forces due to a spring-and-damper system connected to the cylinder, the latter 
being capable of extracting energy from the cylinder. I n  the model chosen by 
Salter, the cylinder was constrained to make rolling oscilIations about a fixed 
point of itself. The power absorption was measured using an electrical dynamo- 
meter consisting of two coils in a magnetic field. Velocity signals from one coil 
were amplified and sent to the other so as to oppose movement. Velocity and 
force signals were then multiplied to indicate the power absorbed, which was 
then compared with wave-height measurements. A possible mechanism for 
power conversion in full-scale models at sea has also been described by Salter. 
The rotations of the cylinder will produce unidirectional pulses of water through 
a special pump described in detail in Salter (1974). In  the theoretical treatment 
described here, it will be assumed that the mechanism for power absorption can 
be described by a simple linear damper having a resistance to motion which is 
proportional to velocity. It is unlikely that an actual pump behaves in so simple 
a fashion and a more realistic model would have to allow for nonlinearities in the 
pumping mechanism. 

On the cylinder we impose the condition that the component of the cylinder 
velogity normal to itself is equal to the normal velocity of the fluid a t  that point. 
Let ci(t) describe the displacement of the cylinder from its equilibrium position. 
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Here i = 1 and 2 relate to sway and heave motions and i = 3 relates to rolling 
motions. Then f;, and c2 describe the horizontal and vertical displacements 
respectively of the centre of mass of the cylinder, while Q describes the angular 
displacement of the cylinder about its point of rotation. The linearized condition 
on the equilibrium position of the cylinder is then 

a@/an = t i n i  (2 .2)  

for (x, y )  on C, the surface of the cylinder, where n = (nl, n,) is the normal vector 
from the body into the fluid a t  the point (x, y )  and n3 = n, x - ( y  + c)  n,, where c 
is the depth of the point of rotation. 

It is convenient to eliminate the harmonic time dependence by writing 

@(x, y, t )  = Re (Q(x, y )  eiwt}. (2.3) 

$(x> y )  = W-lgAQs + i W 5 i  Q i 7  (2.4) 

where & = Re {& ei wt} (2.5) 

We next write the complex-valued time-independent potential $(x, y) as 

and A is a complex constant. The complex potential Qs is the solution of the 
scattering problem in which the cylinder is held fixed in an incident wave of 
unit amplitude potential. The complex potential Qi is the solution to the radiation 
problem in which a normal velocity Re {nieiwt} is prescribed on the cylinder 
surface, corresponding to small oscillations of unit amplitude in one of the three 
modes. 

Condition (2.2) is satisfied if 

a$Jan = 0, a$Jan = ni on the cylinder. 

The wave elevation is given by 

g-la@(x, 0, t)/at = Re {iwg-l$(x, 0 )  eiwt},  

so that the incident wave has amplitude I A I if we assume 

Qs N (eiKx + Re-iKx) eKd as x+ + 00, (2.7) 

where R is-the complex reflexion coefficient for the scattering problem. For 
x -+ - co we assume 

where T is the complex transmission coefficient for the scattering problem. 
Here K = w2/q. 

Q ,., TeiKx+"u, (2.8) 

(2.9) 

(2.10) 

3. The maximum efficiency of power absorption 
The efficiency of the system will be defined as the proportion of the available 

power per unit frontage of the incident wave which is extracted by the body. 
1-2 
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This will clearly depend on the details of the coupling between the cylinder and 
the fluid. Some information about the maximum efficiency possible can be gained, 
however, without knowing the details of the coupling. 

4 N  (( gA/w)  Tl eiKx as x --f - co, 

We have, from (2.4),  (2.7), (2 .9 )  and (%lo), 

(gA/w) (eiEz+Rle-iK*) as x-++co, (3 .1)  
(3.2) 

where Rl = R + iKA$ &/A, Tl = T + iKA,  &/A. (3.3) 

The power per unit length in a sinusoidal two-dimensional progressive wave is 
the mean energy flux per unit length crossing a vertical plane normal to the 
direction of the wave, and it can be shown that RIRl (cFl)  measures the 
proportion of power in the reflected (transmitted) wave. It follows that A', the 
efficiency of the system, is just 

E = l -RIRl -TIFl .  (3.4) 

(Here a bar over a quantity denotes the complex conjugate.) If the cylinder is 
held fixed so that & = 0 then from (3.3) and (3 .4)  

E = l - R E - T F " O ,  (3.5)  

showing that wave energy flux is conserved in this case. Recently Newman 
(1975) has demonstrated a relationship between R, T and Ai which may be 
written as 

A$+B,+R+&T = o (i = i , ~ ,  3 ) .  (3 .6 )  

E = 2Rey-(y(2(1-6)-1, (3 -7 )  

and 6 = pp/ ([A$12+ ( A p ) .  (3 .8)  

If we now use (3 .3) ,  (3 .5 )  and (3 .6) ,  we can, after some algebra, write (3 .4)  in 
the form 

where = iKX: &/A 

The quantity 6, a function of frequency, depends solely on the geometry of the 
cylinder and cannot be influenced by the particular coupling between fluid and 
cylinder. The coupling effect occurs in y through the term &/A, which must be 
determined from the equation of motion of the body. If we now maximize the 
expression (3 .7)  as a function of y, we obtain 

Em,, = ymax = 1 - 6. (3 .9)  

Equation (3 .9 )  is a general result for the maximum efficiency that can be 
achieved by a given two-dimensional cylinder in a single mode of oscillation. 
It also fnllows from (3 .3) ,  (3 .5)  and (3 .6 )  that, when (3 .9)  is satisfied, 

lRl[ = 6, ITl] = 64(1-6)*. (3.10) 

A highly efficient cylinder is one for which 6 is as small as possible. That is, the 
amplitude of the waves produced at x = -co by the forced oscillation of the 
cylinder in the absence of the incident wave must be as small as possible compared 
with the amplitude of the waves produced a t  x = + 03. This is equivalent to the 
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criterion used by Salter in designing an efficient cylinder for which was as 
small as possible. The equivalence follows from (3.5) and (3.6), which show that 
if A; is small then so is T and hence TI also. Notice from (3.10) that as 6+ 0 the 
reflected-wave amplitude tends to zero much faster than the transmitted-wave 
amplitude. For example, if Em,, = 0.9, then lRll = 0.1 and ITl! = 0.3 with 
IAt)2=91Ai12.Forabodywithhorizontalsymmetry,A$ = ( -  l)iAy(i = 1,2,3) ,  
so that 6 = and the maximum possible efficiency is 50 yo. In  this case it follows 
from (3.10) that ]R1l2 = = 4, so that half of the incident wave power is 
shared equally between the reflected and transmitted waves, the other half being 
absorbed by the body. This result is consistent with the tests made by Salter 
(1974) on a vertical vane. He obtained an efficiency of 40% with 25% of the 
incident power being transmitted onwards and 20 yo being reflected back. 

4. The equation of motion of the cylinder 
In  formulating the equation of motion of the cylinder we shall assume that 

the cylinder motion is resisted by mechanical forces which can be modelled by a 
simple spring-and-damper system. Thus LJt) satisfies 

where d and k are the damper and spring constants. For heave and roll motions Ic 
may also include a buoyancy force. The term d& allows a net amount of work to 
be done on the cylinder over a period, provided d $. 0. The term Fi is the hydro- 
dynamic ‘force’ on the cylinder. For i = 1 and 2 this force is horizontal and 
vertical respectively; F3 is the moment about the point of rotation. 

The hydrodynamic forces which do work can conveniently be separated into 
two parts. Thus we write 

where 4, is the force acting on the cylinder in the ith direction when i t  is assumed 
to be held fixed in the presence of the incident wave and Pig is the force in the ith 
direction due to the oscillation of the body in that direction in the absence of the 
incident wave. The latter force can be expressed in the form 

Fi = q,+F,$, (4.2) 

qi = - aii ti - bii ti. (4.3) 

The first term on the right-hand side of (4.3) is that part of the force which is 
exactly out of phase with the acceleration of the cylinder, so that aii may be 
interpreted as an added-mass term describing the increase in inertia of the 
cylinder due to the fluid. The second term on the right-hand side of (4.3) is that 
part of the force which is exactly out of phase with the velocity of the cylinder. 
This term arises because work is done in generating surface waves which radiate 
away from the cylinder. For motions in an infinite fluid bii = 0. 

Now Haskind (1957) has shown that the exciting force Fi, on the fixed cylinder 
is directly related to the waves generated by forced oscillation of the cylinder 
in the ith mode. Thus Newman (1962, equation 37), updating the work of 
Haskind, has shown that 

Fi, = Re(pgAeiwtAf). (4.4) 
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Furthermore (Newman 1962, equation 38), the damping coefficients are given 
in terms of the energy radiated to infinity by the expression 

(4.5) 

[ k - ( m + a i i ) w 2 + i ( b i g + d ) w ] &  = pgAAt, (4.6) 

b . .  zz = 1 2 p  w (p;p+ JAi12) = * p w J A t l 2 ( 1 -  &)-I. 

It follows from (2.5) and (4.1)-(4.4) that 

and this equation determines the response of the cylinder to the incident wave. 
Now the power per unit length absorbed by the cylinder is the mean rate at  

which work is being done on the cylinder by the fluid, per unit length. This is 

the only contribution coming from the term dgt in (4.1). The power per unit 
frontage of the incident wave is obtained by computing the mean energy flux 
per unit length across a vertical plane normal to the wave direction. This is just 
tpg21 A I "/w, so that E, the proportion of power absorbed, is 

4w2dbii( 1 - 6)  
- - from (4.5). 

( I c  - (m + aii) w2}2 + w2(bii + d)2 

The same result can be obtained, after some algebra, by substituting for &/A 
from (4.6) into the alternative expression (3.7) for E,  and using (4.5). 

We see immediately from (4.8) that for a given cylinder the maximum 
efficiency occurs when k = (m + uii) o2 and d = big, giving Em,, = 1 - 6 in agree- 
ment with (3.9). Equation (4.8) canbe used to compute the efficiency for different 
frequencies of the incident wave once the frequency-dependent terms aii, bii 
and 6 are known for the particular cylinder being considered. Notice that for 
d = 0, a freely oscillating cylinder, and d = 00, a fixed cylinder, E = 0 as expected. 
If we assume that the parameters k and d can be varied, then for maximum 
efficiency a t  a frequency wo, say, we choose Ic = [m+aig(wo)] wo and d = bii(wo). 
Computed values of the added-mass and damping terms aii and bii are typically 
non-dimensionalized by writing 

aii = Mpi, bii = Muhi, (4.9) 

where M is the mass (per unit length) of fluid displaced by a half-immersed 
circular cylinder having radius a equal to a typical length of the body. If the 
body is completely submerged, then III is taken to be the mass (per unit length) 
of fluid displaced by a completely submerged circular cylinder. Thus 31 = &rpa2 
or n-pa2. For roll motions the corresponding moments of inertia are taken for M.  
We introduce the dimensionless wavenumber v = w2a/g = 2m/L, where L is the 
wavelength of the incident wave and also vo = w$ a/g. Then 

4v( 1 - 6)  (v+hi) (v8 A,) 
E =  

{ (m/+  pie) vo - (m' + pi) v y  + v( V*Ai + v i  h,)2 ' 
(4.10) 
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where 
hi0 = hi(vo), pi0 = pi(uo), m’ = m/M.  

In  a similar manner, from (4.6) the expression for the ratio of the amplitude 
of oscillation of the cylinder to the amplitude of the incident wave is given by 

I ~ J A ~ S  = 2pa2~-1 (1 -  8) hi/{[(m‘+,ui0) vo- (m’+pi) v12+ v(vShio+ Y * A J ~ ] .  

(4.11) 

For a symmetric body in heave or sway the numerator in (4.11) is just 2hi/7r for 
partly submerged bodies and hi/n for completely submerged bodies. 

A desirable property of any wave-absorbing device is the ability to operate at 
high efficiency over a wide bandwidth. In  order to test the efficiency for varying v 
we need to know the variation of pi, Ai and 6 with wavenumber for the particular 
body. Unfortunately, to the author’s knowledge, no computations exist for these 
parameters for asymmetric two-dimensional cylinders of the type considered by 
Salter. There do however exist computations for various two-dimensional 
cylinders having horizontal symmetry as these coefficients are useful in ship 
hydrodynamics for determining ship motion using strip theory. Before con- 
sidering particular cylinders in detail, it  is necessary to consider more closely the 
conditions for maximum efficiency. From (4.8) it is seen that this requires 

d = bti(w),  k = [m+uii(w)] 0’. (4.12), (4.13) 

It is assumed that the damping constant d which models the power-absorbing 
mechanism can be varied such that (4.12) can be satisfied a t  a given frequency 
w,, say. It remains to check whether (4.13) can be satisfied for w = wo. 

For partially immersed cylinders in roll this can be achieved by varying the 
distance of the centre of mass of the cylinder below the metacentre since for 
cylinders with horizontal symmetry about the roll axis, a t  least, k varies as this 
distance. Generally, for cylinders in roll, the values of k and d can be adjusted 
to satisfy (4.12) and (4.13) with i = 3, so that the cylinder is ‘tuned’ to any 
given non-dimensional wavenumber vo. For cylinders in sway, there is no change 
in the buoyancy forces, so t.hat horizontal springs must be used to provide the 
restoring force, the stiffness of the springs being chosen to satisfy (4.13) with 
i = 1. The situation for partially immersed cylinders in heave is not so straight- 
forward since, because of the large buoyancy forces which occur, it is not always 
possible to satisfy (4.13) over the complete frequency range of interest. Thus in 
the absence of vertical springs, k = 2bpg for small vertical oscillations, where 2b 
is the water-line width of the cylinder in equilibrium. Then, in dimensionless 
form, (4.13) becomes 

47r-%/a = [m‘ +p2(u)]  u, (4.14) 

where m’ = m / M .  In  general, the variation of the heave added-mass coefficient 
pz with Y is such that (4.14) has one root vl, say, and including vertical springs 
increases k and hence increases the left-hand side of (4.14). This has the effect 
of increasing vl, so that by varying the stiffness of the springs it is only possible 
to tune the system to wavenumbers vo > ul. This lower bound on u, may mean 
that in order to tune the cylinder to the predominant wavelengths an unaccept- 
ably large cylinder would be required (since Y = 2m/L). One way round this is 
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to increase the effective mass of the cylinder, thereby reducing vl in (4.14). A 
method of doing this without affecting the equilibrium position of the floating 
cylinder is described by Budal & Falnes (1975). Alternatively the cylinder in 
heave can be partially tuned by satisfying (4.12) a t  any desired frequency and 
allowing k to have its natural value of Zbpg, so that in general (4.13) is not 
satisfied. 

In  the next sections we consider the particular cases of a rolling vertical plate 
and a half-immersed swaying or heaving circular cylinder. In  the plate problem 
we shall be able to tune the plate to any desired wavenumber by varying the 
position of the centre of mass. This may also be achieved for the swaying circular 
cylinder by incorporating horizontal springs. For the circular-cylinder problem 
we shall obtain, for different m', a lower bound to the wavenumbers to which the 
cylinder can be tuned. The maximum efficiency attainable in each case is 50 yo, 
because of the horizontal symmetry about the axis of oscillation. 

5. The rolling vertical plate 
Consider a thin vertical plate submerged to a depth a which is constrained to 

roll about a horizontal axis in the free surface. Since the plate is symmetrical 
about x = 0, 6 = Q in (4.10) and (4.1 1). For rolling motions i = 3 and 1cI = &rpa4, 
the moment of inertia per unit length of the fluid displaced by a semicircular 
cylinder of radius a around its axis. 

The problem of the fluid motion produced by the rolling motion of a thin 
vertical plate is one of the few water-wave problems which permit an explicit 
solution. Thus in the appendix to a paper by Kotik (1963) a reviewer has obtained 
explicit expressions in terms of Bessel and Struve functions for the dependence 
on v of the added-mass coefficient p, and the damping coefficient A,. These were 
derived from the full solution to the problem given by Ursell(l948). Kotik (1963) 
provides numerical values for A, and p3 over a wide range of v by making use of 
the Kramers-Kronig relations. These permit p3 to be computed from a Cauchy- 
type integral involving A,, the latter being relatively easy to find since it is 
related via the Haskind relations to the exciting force on the fixed plate. 

Assuming the plate to be uniform, we have 

m' = m[Jl = 4sh/3na, 

where s is the specific gravity of the plate and h its (small) thickness. It follows 
that in general m' will be small enough for the inertia of the plate to be neglected 
compared with its added inertia. It is assumed that (4.12) and (4.13) can be 
satisfied for all frequencies of interest, the latter by varying the position of the 
centre of mass. In  figure 1, equation (4.10), with 6 = Q and m' = 0, has been used 
to plot bhe power efficiency E against the dimensionless wavenumber v for 
different values of vo, the wavenumber for which maximum efficiency is desired. 
It can be seen that for vo = 0.3 the bandwidth is narrow but for vo = 0.5, E has a 
second maximum a t  about v = 1.8, where the efficiency reaches almost 50 yo, the 
maximum possible in this case since the plate is symmetrical. For vo = 0.5 then, 
there is a wide bandwidth with the efficiency remaining above 40% for 
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FIGURE 1. Efficiency of power absorption E of a rolling plate with m = 0 vs. 
dimensionless wavenumber v for different values of the tuned wavenumber v,. 
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FIGURE 2. 
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wavenumber v for different values of the tuned wavenumber v,. 
Efficiency of power absorption E of a rolling plate with m = 0.5M vs. dimensionless 

v = 04-2.6. The same is true for uo = 0.6 and to a lesser extent for vo = 0.7 
although this is not shown in figure 1. For larger values of vo, the second peak 
gradually disappears, producing narrower bandwidths. It would appear that a 
vertical plate rolling about an axis in the undisturbed surface operates most 
efficiently as a wave-power absorber when it is tuned to wavenumbers vo lying 
between 0.5 and 0.7. For example, a plate d length 20m tuned for maximum 
efficiency at uo = 0.5 would be over 40% efficient in responding to any wave 
having a wavelength between 50 m and 300 m. On a laboratory scale, a similar 
efficiency is possible with a plate 15 cm long responding to wavelengths between 
40 em and 160 em. 
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v = 2na/L 

FIGURE 3. Ratio I&a/ A of maximum displacement of lower edge of rolling plate with 
m = 0 to incident wave amplitude vs. dimensionless wavenumber v for different values of 
the tuned wavenumber v,,. 

The effect of increasing the inertia of the plate can be seen in figure 2, where 
m' = 0.5. For v,, = 0.5 the 40% efficiency bandwidth has been reduced to 
v = 0.42-1.62 and the second maximum has disappeared. A better choice of 
wavenumber to which to tune the system is probably v, = 1.2, giving E > 0.4 
for v = 0-6-1-6. I n  this case our 20m plate is over 40 % efficient for waves with 
wavelengths lying between 80 m and 200 m. 

The roll amplitude of the plate as a function of v is given by (4.11) with i = 3, 
6 = 4 and M = &pa4. The complex quantity t3 describes the amplitude and 
phase of the angular displacement of the plate from the vertical. Figure 3 shows 
I &/A I, the ratio of the maximum displacement of the lower edge of the plate 
to the incident wave amplitude, plotted against wavenumber v, for different 
values of the tuned wavenumber v,,. For small values of v, large resonant plate 
amplitudes occur near the tuned wavenumber. For instance for vo = 0.3 the 
maximum displacement of the lower edge of the plate is 7 times the incident 
wave amplitude for v close to 0.3. Such large plate displacements are not con- 
sistent with a linearized theory and in practice one would expect nonlinear 
effects such as wave breaking to predominate in this case. For larger values of 
v,, the peak displacement is much smaller and occurs not near the tuned wave- 
number but near v = 0.4. As v increases the displacement diminishes from its 
peak to zero monotonically. The effect of plate inertia on the plate displacement 
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v = 2rralL 

FIGURE 4. Ratio 1&a/A1 of maximum displacement of lower edge of rolling plate with 
m = 0.5M t o  incident wave amplitude vs. dimensionless wavenumber v for different values 
of the tuned wavenumber v,. 

is shown in figure 4, where it can be seen that, for mlM = 0.5, the plate displace- 
ments are diminished and the curves for different values of vo are compressed, 
there being little difference between them for v > 1-4. 

6. The half-immersed swaying or heaving circular cylinder 
As a second example we consider a half-immersed circular cylinder which is 

constrained to make small horizontal (sway) or vertical (heave) oscillations in 
response to the incident waves. Values of the sway and heave added-mass and 
damping coefficients were estimated from curves given by Frank (1967), for 
values of the dimensionless wavenumber v up to 1.5. 

Results for a floating horizontal cylinder constrained to make pure swaying 
oscillations are shown in figure 5. Since there is no buoyancy restoring force in 
sway, it is assumed that the cylinder is restrained by horizontal springs whose 
stiffness Ic can be varied, along with d,  the damping constant, such that both 
(4.12) and (4.13) can be satisfied for all wavenumbers of interest. Equation (4.10) 
was computed with 6 = 4, i = 1 and rn = M for different values of v and with 
vo = 0.3, 0.5 and 1.0. It can be seen that for vo = 0.3 the bandwidth is narrow 
but that for v,, = 0.5 and 1.0 it is much wider, so that at v0 = 0.5, for example, 
over 40 yo of the available power is extracted from waves of wavelength between 
5 and 18 times the cylinder radius. When the cylinder is tuned for maximum 
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FIGURE 5. Efficiency of power absorption E of a swaying half-immersed circular cylinder 
with m = M ws. dimensionless wavenumber v for different values of the tuned wavenumber vo. 

L.< \ \ m’=1.0 

v = 2nalL 

FIGWE 6 .  Ratio lcl/A I of the sway amplitude of a half-immersed circular cylinder to the 
incident wave amplitude wa. dimensionless wavenumber v for different values of the tuned 
wavenumber v,. 
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v = 2nalL 

FIGURE 7. Efficiency of power absorption E of a heaving half-immersed circular cylinder 
with m = M vs. dimensionless wavenumber v for different d u e s  of the tuned wavenumber 
v,,. The natural tuned wavenumber is v, = 0-79. The dashed curve shows the effect of partial 
tuning at v,, = 0.3. 

efficiency a t  v, = 1.0 the efficiency is largely insensitive to small variations in 
wavenumber about v = 1-0. The corresponding sway amplitude of the cylinder 
relative to the incident wave amplitude is shown in figure 6. For both long and 
short waves the sway amplitude tends to zero, so that there is a maximum 
amplitude for each value of v,, the maximum decreasing with increasing v,. 

For a floating half-immersed circular cylinder making small vertical oscilla- 
tions there is a natural buoyancy restoring force and k = Sapg, so that with 
m = .M equation (4.14) has the root v1 i 0.79. At this wavenumber, corres- 
ponding to waves of wavelength about 8 times its radius, the heaving cylinder 
can be tuned to extract 50 yo of the wave power by choosing d to satisfy (4.12). 
Figure 7 shows how the efficiency of power extraction computed from (4.10) 
with 6 = 8 and i = 2 varies with v. As for the swaying cylinder, E decreases 
monotonically either side of the tuned wavenumber and the cylinder is over 40 yo 
efficient for waves of wavelength between about 6 and 11 times the radius of the 
cylinder. Also shown is the effect of tuning the cylinder to a wavenumber 
vo = 1.0. This is done by choosing k and d such that (4.12) and (4.13) are satisfied 
by v0 = 1.0, a vertical spring being required to provide the additional restoring 
force. The two curves are similar, the second curve showing that the cylinder is 
now 40% efficient in absorbing waves of wavelength between about 5 and 8 
times the cylinder radius. 

It has already been mentioned that a possible method of producing peak 
efficiencies a t  lower wavenumbers is to tune the cylinder only partially. In 
other words we allow k its natural value of 2pga so that (4.13) is satisfied by 



14 D. V .  Evans 

0 0.3 0.6 0.9 1.2 1 .’; 
v = 2nalL 

FIGURE 8. Efficiency of power absorption E of a heaving half-immersed circular cylinder 
with rn = 1.5M v8. dimensionless wavenumber v for different values of the tuned wave- 
number v,. The natural tuned wavenumber is v, + 0.6. 

vl = 0.79 but adjust d to any desired wavenumber so that (4.12) is satisfied at, 
say, v = vo, but not (4.13). In  this case the denominator of the expression (4.10) 
for E must be changed to 

and a similar change is required in the expression (4.11) for the heave amplitude 
ratio. The result is shown by the dashed curve in figure 7, where vo = 0.3. It is 
noticeable how little effect this partial tuning has on shifting the peak efficiency 
away from v = 0.79. The efficiency is increased by about 30% for v = 0.3 and 
reduced by only about 2 %  for v = 0.79, suggesting that the restoring force is 
more important than the damping force in determining the peaks of maximum 
efficiency. 

An alternative method of lowering the wavenumber at which maximum 
efficiency occurs is to increase the effective mass of the cylinder. Thus figure 8 
shows the variation of E with v when mlM = 1.5. With this value (4.14) has the 
root vl + 0.6, so that the cylinder can be tuned to 50 % efficiency in response to 
waves of wavelength about 10 times the cylinder radius. Also shown in figure 8 
is the effect of increasing the ‘stiffness’ of the cylinder by adding vertical springs 
so that maximum efficiency is achieved at v,, = 0.8 and vo = 1.0. It can be seen 
that, just as for the rolling vertical plate, the effect of increasing the inertia is to 
reduce the efficiency bandwidth. Comparing the corresponding curves for 
vo = 1.0 and mlM = 1 and 1.5 respectively shows how the 40% efficiency 
bandwidth is reduced from v = 0.77-1.24 to v = 0.82-1.17. 
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FIGURE 9. Ratio lEz/AI of the heave amplitude of a half-immersed circular cylinder with 
m = M to the incident wave amplitude vs. dimensionless wavenumber v for different values 
of the tuned wavenumber vo. The dashed curve shows the effect of partial tuning at  v0 = 0.3. 
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FIGURE 10. Ratio \&/A I of the heave amplitude of a half-immersed circular cylinder with 
m. = 1.5M to the incident wave amplitude vs. dimensionless wavenumber v for different 
values of the tuned wavenumber vo. 
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The heave amplitude of the cylinder relative to the incident wave amplitude 
is shown in figure 9. When tuned to the 'natural' wavenumber, vo = 0.79, the 
heave amplitude decreases monotonically with v. The dashed curve shows the 
heave amplitude for a partially tuned cylinder with vo = 0-3. It is less than the 
corresponding amplitude for the completely tuned cylinder for all v. The effect 
of increasing the stiffness of the cylinder so that vo = 1.0 is to decrease the 
amplitude for v < 0.8 and to increase it for v > 0.8, there now being a local 
maximum a t  about v = 0.7. Figure 10 shows the heave-amplitude variation with 
v when the effective mass m = 1.5M. The curves all show a maximum at a wave- 
number v less than the tuned value vo. In  general the effect of increasing the 
inertia is to decrease the heave amplitude a t  a given wavenumber. The values of 
the amplitude a t  v = 0 are obtained from the asymptotic result 

I E 2 P  I = 4/4m' +PZO) Vo9 (6.2) 

which equals unity for a cylinder with no additional restoring force. Equation 
(6.2) follows from (4.11) when use is made of the result h2(0) = 8/n- for the heaving 
half-immersed cylinder given by Kotik & Mangulis (1962). 

7. Three-dimensional wave-power absorbers 
The theory given in 8 4 can also be applied to three-dimensional bodies having 

a vertical axis of symmetry. As before it is assumed that the body is constrained 
to move in a single mode only. The equations of motion are the same as in 8 4 
up to (4.4), which must be replaced by the relation between the exciting force 
Fi8 and the damping coefficients for such bodies given by Newman (1962, 
equations 31-33). Thus 

&8 = Re { A ( 2 ~ p g ~ w - ~ b , ~ ) J  eiwt}, (7.1) 

where 
€ = (  2, i = 1,3,  

1, i = 2. 

It follows that the power absorbed by the body is 

ew-lpg3 dbii A2/{[k - (m + aii) w2l2 + u2(d + b,,)". 

The total power in an incident wave of unit frontage is pg2A2/4w, and the ratio 
of these quantities provides us with a power absorption length 1 as defined by 
Budal & Falnes (1975) : 

4cgdbi, 
1 =  

[k - (m + aii) ,212 + ~ ' ( d  + bii)' 

= % ( I -  (k - (m + aii) d)' + w2(d - bif)' 
@' (k - (m + at() d)' + ~ ' ( d  + bii)2 

It follows that, for a given wave frequency w ,  the maximum value of 1 is 

I , ,  = €g/w' = sL/27l, (7.3) 

obtained by choosing k = (m + aii) w2 and d = bii as in the two-dimensional case. 
The result (7.2) leads to the remarkable conclusion that a correctly tuned 

floating body of any diameter is capable of absorbing all the power in an incident 
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wave of frontage equal to sL/21-r, where L is the wavelength of the incident wave. 
This result has also been quoted by Budal & Falnes (private communication) 
for the case of heave oscillations. It appears, therefore, that in response to long 
waves, the tuned body may be more efficient than a two-dimensional cylinder, 
which must have I,,, less than the cylinder length. However, we find that the 
response amplitude of the tuned body also increases as L increases, so that the 
assumptions of small oscillations may be violated by the body when tuned to 
long waves. In  fact, from (7.1) the expression corresponding to (4.6) shows that 

\&/A\2 = 2 ~ p g ~ b , ~ w - ~ / { [ k -  ( m + ~ i ~ ) ~ ~ ] ~ + ~ ~ ( d + b ~ ~ ) ~ } ,  (7.4) 

where bii = MA, o and it is usual to choose for M the mass of water displaced by 
a half-immersed sphere of radius a equal to a typical radius of the body. Thus 
M = $7rpa3 (or twice this if the body is completely submerged) and 

(7.5) I &/A I max = (3E/4?rhi V 3 ) t .  

We see that this expression may well become large for small values of v, depending 
on the precise variation of hi with v. 

If we tune the body to a wavenumber v, = wia/g by choosing k = m' + aii(wo) wt  
and d = b,,(w,) then the full non-dimensional expression for the amplitude of the 
body relative to the incident wave amplitude is 

3Eh, t 
]&/A I = (F) /{[ (m' +pi) yo - (m' + p i )  v]' + v(vi  A, + v*A,)~)* (7.6) 

while the non-dimensional power absorption length Z/2a is given by 

The heaving sphere 

We consider in detail the particular case of a sphere constrained to make small 
heaving oscillations in response to the incident waves. This has also been con- 
sidered by Budal & Falnes (1 975) but their treatment ignores the effect of the 
diffracted wave field. 

For heaving oscillations i = 2 and E = 1 in (7.2) and (7 .a), and there is a natural 
buoyancy restoring force such that k =I-rpa2 in (7.4). The non-dimensional form 
of the optimal tuning condition corresponding to (4.14) is now 

(7.8) 8 -  - [m' +p2(v ) ]  v, where m' = m / N ,  

and this has the root vl + 1.045 for m' = 1. Thus optimal tuning is possible only 
for v = vl or, by incorporating additional vertical restoring forces, for v 2 vl. 
This means that a floating sphere can be an efficient wave-power absorber only 
for waves of wavelength less than about 6 times the sphere radius. If, as in the 

2 F L Y  77 
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FIGURE 11. Power absorption length ratio 1/2a V.S. dimensionless wavenumber v for a heaving 
half-immersed sphere with m = M for different values of the tuned wavenumber v,,. The 
natural tuned wavenumber is v,, = 1.045. The dashed curves are the corresponding ratios 
] [ , /A  I of the heave amplitude of the sphere to the incident wave amplitude. 

two-dimensional case, we assume that the mass m can be increased without 
affecting the buoyancy of the sphere, then v1 can be reduced. Thus for mf = 1.5, 
equation (7.8) has the root vl = 0.75. 

Curves of 1/2a as a function of v are shown in figure 11 using values for pUz and 
A, estimated from Havelock (1955). A floating sphere with m/M = 1-0 is tuned 
to wavenumbers vo = 1.045. Also shown are the curves obtained when the sphere 
is tuned to wavenumbers of 1.25 and 1.5 by increasing the vertical restoring force 
by means of springs. The envelope of the peaks in Z/2a has the equation 
2/2a = (2v)-l. It can be seen that a heaving sphere can extract all the power in an 
incident wave whose crest length is equal to just less than half the diameter of 
the sphere and whose wavelength is about 6 times the radius of the sphere. It is 
of interest to compare this with the heaving circular cylinder (figure 7), which 
can extract half of the power in an incident wave of crest length equal to the 
cylinder length and of wavelength about 8 times the cylinder radius. It follows 
that, for a circular cylinder to be as efficient as a sphere of diameter 2a in extract- 
ing power from a given incident wave, i t  must have length 2a and radius Qa 
approximately, with 6a = L, the wavelength of the incident wave. In  this case 
the sphere’s mass must be about 1.2 times the mass of the cylinder. 

If the sphere is stiffened by increasing the vertical restoring force, the tuned 
wavenumber increases and the peaks of absorption-length ratio decrease. The 
heave amplitude ratio is also shown in figure 11 by the dashed curves. The 
curves peak at a value of v which is less than the corresponding tuned wave- 
number vo. For long waves, as v -+ 0, the asymptotic value of I E,/A I is given by 

which is derived from (7.6) by using the result h,(v) N &rv as v+O given in 
Kotik & Mangulis (1962) for the heaving sphere. For an unstiffened heaving 

I &/A I 3/[2(mf +PZO) v01, 
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v = 2nalL 

FIGURE 12. Power absorption length ratio 1/2a vs. dimensionless wavenumber v for a heaving 
half-immersed sphere with m = 1.5M for different values of the tuned wavenumber v,. The 
natural tuned wavenumber is v, = 0.75. The dashed curves are the corresponding ratios 
]&/A] of the heave amplitude of the sphere to the incident wave amplitude. 

sphere 1g2/A1 N 1 as u + O .  The effect of increasing the restoring force is to 
decrease the heave amplitude a t  a given wavenumber. 

Figure 12 shows the eeect on 1/2a of increasing the mass of the sphere so that 
m' = 1.5. The natural tuned wavenumber is now vo = 0.75 and the peak of 1/2a 
is increased accordingly although the bandwidth is narrower. Also the heave- 
amplitude peak is much larger, being over l+ times the incident wave amplitude. 
The curves for uo = 1 4  and 1-25 show that the same is true for the stiffened sphere. 
The advantage of increasing the mass of the sphere is that i t  enables tuning to 
take place at smaller wavenumbers, which means smaller spheres, and also 
greater power absorption. This is offset, however, by larger heave amplitudes of 
the sphere, and narrower bandwidths. 

The effect of partially tuning the sphere by satisfying d = b2,(o) for any 
desired w = oo while allowing k to have its natural value of rpa2  turns out to 
make little difference to 1/2a and is not shown in the figures. As for the circular 
cylinder, it  appears that the restoring force is more important than the damping 
force in tuning the sphere for maximum power absorption. 

8. Oscillations in more than one mode 
It was shown in 8 3 how the efficiency of power extraction a t  a given wave- 

number can be improved by choosing a cylinder for which AT is as small as 
possible. For a cylinder oscillating about an axis of horizontal symmetry it was 

2-2 
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shown that the maximum efficiency possible at a given wavenumber was 50 yo. 
In  this section we consider cylinders with horizontal symmetry about their axis 
of oscillation which are allowed to oscillate in more than one mode. To be specific, 
we assume that the cylinder is held in equilibrium by horizontal and vertical 
springs and dampers so that, when excited by an incident wave, the cylinder is 
constrained to make combinations of small horizontal and vertical oscillations 
without rotation. (Alternative constraints may also be considered but the present 
assumptions are chosen for simplicity.) We shall show that, a t  a given frequency, 
a correctly tuned cylinder, that is, one in which the spring and damper constants 
have been chosen appropriately, is I00 yo efficient as a wave absorber. 

The motivation for what follows arises from a paper by Ogilvie (1963), who 
considered the effect of waves on a completely submerged circular cylinder. In 
the course of his work he showed that if the centre of the cylinder described a 
circle then the waves generated by the cylinder motion travelled away from the 
cylinder along the free surface, but in one direction only. Recent experiments? 
give a qualitative verification of this result. This phenomenon, while a t  first 
appearing remarkable, can be generalized to arbitrary cylinders with horizontal 
symmetry. Heave oscillations of such a cylinder produce waves of equal ampli- 
tude and phase radiating to either infinity whereas sway oscillations produce 
waves of equal amplitude but exactly out of phase a t  either infinity. By a 
suitable combination of the amplitudes and phases of these vertical and hori- 
zontal motions it is possible to cancel the wave at one infinity completely, thus 
producing radiation in one direction only. Reversing the sign of the time co- 
ordinate now shows that there exists a motion of the cylinder which will com- 
pletely absorb a given incident wave. 

Having demonstrated in principle the possibility of a 100 yo efficient wave 
absorber, it remains to determine what conditions must be satisfied by the 
spring and damper constants to ensure that the cylinder will respond in the 
required fashion and absorb all of the incident wave. 

Equations of motion 
The equations of motion for the cylinder are very similar to those derived in 8 4. 
Here we allow gl and c2, the amplitudes of sway and heave respectively, to occur 
simultaneously. Thus (4.1) is modified to the two equations 

mEi = -d i&-kic i+& (i = 1,2) ,  (8.1) 

where di and lc6 are the damper and spring constants in the horizontal (i = 1) 
and vertical (i = 2) directions. As before Fi is the total hydrodynamic force in 
the i th  direction. We may write 

2 

j=1 
& = &+ c qi (i = 1,2),  

where Fi, is the force in the ith direction on the cylinder when it is assumed to be 
fixed in the presence of the incident wave and Fij is the force in the i th direction 

By I. Glendenning (Marchwood Engineering Laboratories, C.E.G.B., Marchwood, 
Southampton, England), private communication. 
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due to oscillation of the cylinder in the j th  direction. Now for cylinders with 
horizontal symmetry about their axis of oscillation, Fi, = 0 if i =k j (it j = 1,2). 
Because of this the subsequent development follows closely that leading to (4.6). 
The power per unit length absorbed by the cylinder is modified to include the 
work done by both Fl and F2, to give 

The expression for the efficiency, after putting 6 = 4 because of the symmetry 
of the cylinder, becomes 

An alternative derivation of (8.2) is pcssible by making use of the definition of 
E in terms of reflexion and transmission coefficients given by (3.4). In  this case 
the time-independent potential $(x, y) can be written as 

so that 

Equations (3.4) and (3.6) now show that 

2 

i= l  
E = 2 Z {Reyi- IyiI2}, ( 8 . 5 )  

where yi = gi/gA and the fact that 1 A; 1 = \A; I (i = I, 2) has been used. 
The maximum value of E occurs when yi = 4 (i = 1,2),  whence Em,, = 1 and the 
wave is completely absorbed Substituting yi = 4 into (8.3) and (8.4) we obtain 

Rl = R+ 1 A;/X:, Tl = T + 4 AT/.@. 

It follows that R, = Tl = 0 as expected since R + ( - l)iT = - (A;/&) from 
(3.6) and A: = ( -  l ) iAi  (i = 1,2) .  

Returning to (8.2) we see that maximum efficiency is achieved at a frequency 
wo by choosing 

giving E = I. If  we non-dimensionalize the added-mass and damping coefficients 
in heave and sway by writing aii = Mpi and bii = Noh, as before, we obtain 

( u i  hi) P o  Aio) (8.7) 

2 2 

i5'1 i-1 

ki = ( r n + U i i )  w;, di = bii(wo) (i = 1,2) ,  (8.6) 

2 
E = ~ V X  

$,=I { (m' + pie) vo - (m' +pi) v)2 + v( v&Ai + do Aio)2 

in the same notation as in (4.10). 
Also, the amplitude of oscillation in the ith mode is given by 

and (%t i )  and (4.5) confirm that yi = 4 for maximum efficiency. 
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FIGURE 13. Efficiency E of power absorption of a half-immersed circular cylinder with 
m = 111 in a combination of heave and sway motions vu9. dimensionless wavenumber v for 
different values of the tuned wavenumber vo > 0.79. For vo < 0.79 the effect of partial 
tuning is shown. 

The non-dimensional form of (8.8) is 

If;i/A 12 = pa” ; hJ[((m) +PiO)  vo - (m) +Pi) v}2 + v(vi hi, + v+ h21, (8.9) M i=1 

which is similar to (4.11) with 6 = 9. 

The half-immersed circular cylinder 

We consider combined heave and sway oscillations of a half-immersed circular 
cylinder. As was pointed out in § 4 there is a natural buoyancy force in heave, 
and in the expression (8.7) for E, the term (m’+p2,)v0 must be replaced by 
477-1 for vo < v1 f 0.79 as in (6.1). For vo > 0.79, (8.7) holds as it stands. Figure 
13 shows curves of E,  modified as described, against v for different values of 
v0, the tuned wavenumber. It is assumed that m = M so that the cylinder is 
floating. For ifo > v1 the horizontal and vertical springs and dampers can be 
chosen to satisfy (8.6) and 100 yo absorption occurs at v = vo. This can be seen in 
the curves for vo = 0.79 and vo = 1.0. For vo < v1 only the horizontal part of the 
motion can be tuned exactly and so the maximum efficiency attainable is some- 
what less than 100 yo. At vo = 0.3 it can be seen that the maximum efficiency is 
about 80 yo near v = 0.7 and a second, smaller peak occurs near v = 0.3. 

The submerged circular cylinder 

We next consider the problem of a completely submerged circular cylinder held 
in equilibrium by horizontal and vertical springs and dampers. For this problem 
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FIGURE 14. Efficiency E of power absorption of a circular cylinder of radius a with m = M 
submerged to a depth :a and making a combination of heave and sway motions 'us. dimen- 
sionless wavenumber v for different values of the tuned wavenumber vo. 

the sway and heave added-mass and damping coefficients are the same (Ogilvie 
1963, equation 35) and values for these coefficients estimated from the results 
of Frank (1967) for a cylinder of radius a whose centre is submerged to a depth 
:a are used. For a completely submerged body no natural buoyancy forces occur 
during the motion so hi (i = 1,2)  can take any desired positive value, so that in 
general (8.6) can be satisfied. (Ogilvie has shown that aii can in fact become 
negative for cylinders close to the surface but this does not occur in the case 
under consideration.) 

Figure 14 shows curves of E against v for different values of the tuned wave- 
number v,, computed from (8.7) with m = M .  At v = v, the incident wave is 
completely absorbed by the cylinder, whose centre is then moving in a circle. 
For both very short and very long waves, the efficiency of power absorption 
tends to zero. In  the intermediate range a cylinder tuned to a wavenumber 
v, = 0.5-0-7 is very efficient in extracting power from waves. Thus for vo = 0.5 
it can be seen that over 90% of the wave power is extracted from waves of 
wavelength between about 7 and 24 times the cylinder radius. It is clear that at 
this value of vo the efficiency of the cylinder is remarkably insensitive to changes 
in the wavelength of the incident wave. 

The heave and sway amplitudes relative to the incident wave amplitude are 
computed from (8.9) with M = rpa2, and shown in figure 15 as a function of Y 
for different v,. At v = v,, the motion of the cylinder is circular but this is not 
evident from the results as it requires knowledge of the relative phases of the 
heave and sway motions. For vo = 0.5, when the efficiency bandwidth is widest, 
the heave or sway amplitude has a maximum of about 0.8 times the incident 
wave amplitude a t  v = 0.25, corresponding to E + 0.87. At v = 0.5, when 
E = 1.0, the amplitude ratio is 0.5, so that the cylinder then describes a circle 
of radius one-half the incident wave amplitude. 
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FIGURE 15. Ratio ][,./A I (i = 1,2) of the heave or sway amplitude to the incident wave 
amplitude for a circular cylinder of radius a with m = M submerged to a depth :a and 
making a combination of heave and sway motions v8. wavenumber v for different values of 
the tuned wavenumber vo. 

The variation of E with depth of submergence of the cylinder can be predicted 
from (8.7). The damping coefficients for the submerged circular cylinder decay 
exponentially as the depth of the centre of the cylinder increases relative to the 
radius of the cylinder. This follows from Ogilvie’s (1963) equation (59). Thus one 
would expect that for deeply submerged cylinders the efficiency would drop 
sharply either side of v = yo, producing a very narrow bandwidth. Also, from 
(8.9) the amplitude ratio at v = vo is inversely proportional to the damping 
coefficient and consequently increases exponentially with decreasing depth. 

9. Conclusion 
A simple linearized theory has been presented for the absorption of the power 

in a sinusoidal wave train by an oscillating body. Expressions have been derived 
for the efficiency of power absorption when the body is a two-dimensional cylinder 
oscillating in either a single mode or in certain combinations of two modes. These 
expressions show that the efficiency depends solely on the solution to the radia- 
tion problem; namely, when the cylinder is forced to oscillate in the particular 
mode. A special case of a three-dimensional symmetric body was also considered. 
Curves were presented showing the variation of efficiency with non-dimensional 
wavenumber, it  being assumed that the body was coupled to the fluid using 
springs and dampers whose constants could be adjusted. Only simple bodies 
with symmetry whose wave-making properties were known were used in the 
calculations. The expressions will be applicable to more efficient asymmetric 
wave-power absorbers such as the Salter cam once the added-mass and damping 



Wavepower absorption by oscillating bodies 25 

coeficients together with the radiation wave amplitudes are known for such 
bodies. 

Of particular interest in the results was the possibility of 100 % efficiency for 
cylinders oscillating in a combination of modes. The large bandwidth exhibited 
by the submerged cylinder is encouraging in this respect and may warrant 
further design studies. 

Notes added in proof 

(a) This paper was presented at the Eleventh Symposium on Naval Hydro- 
dynamics held at University College London in March 1976. A paper presented 
at the Symposium by Professor J. N. Newman of M.I.T. contains material 
which overlaps with material in this paper. The same applies to a recently 
published paper by Professor C. C. Mei of M.I.T. ( J .  Ship Res. 20 (1976), 63-66). 
In  each case the results were derived independently. 

(b)  Dr M. Katory of the British Ship Research Association, Wallsend, has 
recently published curves of added inertia and damping coefficients for the 
rolling motion of the Salter cylinder in the NavaZ Architect, May 1976). 
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